
Appendix A

Proof of Proposition 2

For part i, writing out the probability of protest and simplifying gives:
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!
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is decreasing in ⇢, this probability is increasing in ⇢ if and only if µ
!

< k/�.

For part ii, rewriting the protest condition substituting µ

!
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!
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So, the probability of protest is increasing in ⇢ when ✏

!

is increasing in ⇢. Taking the appropriate

derivative:
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Rearranging this gives the desired result.

Results with More General Distributions of ✓ and !.

The results relating the tactical decision hold as long as the signal conveys any information

about ✓ in the following sense. Suppose ✓ and s

t

are drawn from a joint distribution, and again

write the conditional mean of ✓ given s

t

as µ
✓

. Then the optimal tactical choice is still µ
✓

, and the

expect cost when choosing this tactic is:

E[k(µ
✓

� ✓)2] = kV
✓

[✓|s
t

]
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If V
✓

[✓|s
t

] is less than V
✓

[✓] for all s
t

(as with the normal distribution), then there is always more

protest with a tactical signal than without a tactical signal. However, this property is not true for

all distributions. For example, suppose ✓ is binary, taking on value 0 or 1. If the prior places a

very high likelihood on 0 (or 1) and the signal indicates that 1 is more likely than in the prior, the

variance of the posterior distribution will go up.

A property that always holds is that the average cost of protest over the potential signals always

decreases upon observing s

t

, which is just a consequence of the law of total variance:

kE
s

t

[V
✓

[✓|s
t

]] = k(V
✓

[✓]� V
s

t

[E
✓

[✓|s
t

]])

When V
s

t

[E
✓

[✓|s
t

]] is high – which means the signal has a large effect on the posterior belief

of ✓ – then in general the expected cost of protest will be low. So, if we label V
s

t

[E
✓

[✓|s
t

]] the

informativeness of the signal, then more informative signals will (on average) leads to a lower

expected cost of protest.

The results regarding the signal of the regime’s popularity are also much more general. For an

prior on ! and noise term ✏

!

, the law of iterated expectations implies that:

E[E[!|s
!

]] = E[!]

that is, the average posterior belief about ! must be !. So, for there to be realizations of s
!

that

increase the belief about !, there must be realizations that decrease !. Another property that

always holds is that as ⇢ ! 0, the citizen learns nothing about ! from s

!

, and hence protests if and

only if µ
!

> k/�. So, there will always be a region of the parameter space where protest is more

likely for ⇢ > 0 than for ⇢ = 0 and always a region where protest is less likely for ⇢ > 0 than for

⇢ = 0.
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Derivation of Equilibrium Condition in Section 2

I search for symmetric Perfect Bayesian Equilibria that are monotone in the individual level of

dis-satisfaction with the regime. This means that (1) all citizens use the same strategy, (2) citizens

protest if and only if they sufficiently dislike the regime, and (3) citizens’ beliefs about the regime

strength and level of protest are consistent with Bayes’ rule and the other citizens’ strategy profile.

Since s is a sufficient statistic for the public signals, I also restrict attention to equilibria where

citizens only condition their behavior on this average rather than the individual signals. The ex

ante distribution of s is normal with mean ! and precision n↵

!

⌘ ↵

s

, i.e., the more publicly

observed signals, the more precise the information gleaned from the signals.

A citizen with regime sentiment’s belief about ! is normal with mean:

µ

!

(!
i

) =
↵0µ!

+ ↵

s

s+ ↵

!

!

i

↵0 + ↵

s

+ ↵

!

and precision ↵0+↵

s

+↵

!

. The only way the public signals enter this term (and hence the expected

payoff to protest for a fixed strategy) is through the s term, justifying the focus on strategies that

only condition on the average public signal.

From the perspective of a citizen with !

i

, the probability of citizen j protesting is:

Pr(!
j

> !̂(s)) = Pr(! + ⌫

j

> !̂(s)) = �
�
↵̃

1/2 (↵
s

(!
i

)� !̂(s))
�
,

where ↵̃ = (↵0+↵

s

+↵

!

)↵
!

↵0+↵

s

+2↵
!

. The equilibrium condition is that the marginal citizen is indifferent

between protesting and not, or:

!̂(s) + v

A

�

✓
↵̃

1/2 ↵0 + ↵

s

↵0 + ↵

s

+ ↵

!

(µ
!

� !̂(s))

◆
= k/�,

where µ

!

= ↵0µ!

+↵

s

s

↵0+↵

s

is the public mean belief about !.
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Proof of Proposition 4

The ex ante expected size of protest is given by

E[A] =
Z 1

s=�1
Pr(!

i

> !̂(s)|s)�(s;µ
!

,↵

s

)ds,

where �(·;µ,↵) is the probability density function of a random variable with mean µ and precision

↵. This is decreasing in !̂(s). Implicitly differentiating equation 6 implies the level of protest is

decreasing in k/�, proving parts i-ii.

The level of protest is a complicated function of ↵
s

, but extensive numerical analysis indicates

that a result similar to proposition 2 applies, i.e., the level of protest is increasing in ↵

s

when protest

is ex ante unlikely and decreasing in ↵

s

otherwise.

Tactical Coordination Model

The actors in the model are a continuum mass 1. For this model, ✓ represents the average

preferred tactic. At the outset, citizens share a common prior on ✓ that this is normally distributed

with mean normalized to 0 and precision �0.

Citizens have an individual preferred tactic x

i

, given by:

x

i

= ✓ + ⌫

i

,

where ⌫

i

is normally distributed with mean 0 and precision �

x

.

Citizens also observe a public signal of ✓ given by:

s

✓

= ✓ + ✏

s

,

where ✏

s

is normally distributed with mean 0 and precision �

s

.

All of the primitive random variables: ✏0, ✏
s

, ⌫
i

and ✓ are independent.
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Let a
i

2 {0, 1} be the protest decision for citizen i and t

i

2 R be the tactic chosen by citizen i

if protesting. The citizen payoff is:

u(a
i

, t

i

; x
i

) = a

i

⇥
! + v

A

A� g(R)� k[r(t
i

� x

i

)2 + (1� r)(t
i

� ✓)2]
⇤
. (9)

As before, if a citizen does not protest (a
i

= 0), she gets a payoff of 0. The A term is the proportion

of citizens that protest and R is the range of tactics chosen by the protesters. Assume v
A

� 0 and g

is a continuous and increasing function with g(0) = 0 and lim
R!1 g(R) = g for some finite g > 0.

A high v

A

means the protest size has a large impact on the benefit of joining, and the g function

captures how much the effectiveness of protest decreases as participants choose a less cohesive set

of tactics. For the tactical coordination model, assume ! 2 R is common knowledge.22

The k term scales the general cost of protesting, which is comprised of two components. First,

the (t
i

� x

i

)2 term means the cost of protesting with tactic t

i

is increasing in the distance between

citizen i’s chosen and preferred tactic. Second, the (t
i

� ✓)2 term indicates the cost is increasing

in the distance between citizen i’s chosen tactic and the average preferred tactic. A direct inter-

pretation of this term is that ✓ represents an objectively optimal tactic, and citizens want to choose

effective tactics. The term also has the effect of inducing citizens to choose a tactic closer to what

they think others will do rather than simply picking their ideal tactic, and hence indirectly captures

the incentive to coordinate with others. The r 2 (0, 1) parameter scales the relative importance of

the two components of the cost.

The coordination incentive would more directly be captured by a term increasing in the dis-

tance between citizen i’s chosen tactic and the average chosen tactic of others as in related models

(e.g., Morris and Shin, 2002; Dewan and Myatt, 2008) where, to use the terminology here, all cit-

izens participate in the protest by assumption. Unfortunately this formulation greatly complicates

the analysis when participation is endogenous, since the expectation of the preferred tactic of par-
22Or equivalently, that the citizens share a common prior on the regime’s unpopularity with mean !.
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ticipants is generally non-linear in x

i

unless all citizens participate. As a result, there is no linear

equilibrium. The payoff structure used here rescues this linearity, making the model substantially

more tractable.

After observing x

i

and s

✓

, the citizens simultaneously choose whether or not to protest, fol-

lowed by the protesters simultaneously choosing a tactic. I solve for Perfect Bayesian equilibria

that are symmetric in the sense that all citizens use the same strategy, and in a stronger sense

formalized below.

Regardless of the strategies of others, the optimal protest tactic for citizen i (if joining) is a

weighted average of her preferred tactic and her expectation about the average preferred tactic of

others: t⇤
i

= rx

i

+(1�r)µ
i

, where µ
i

= E[✓|s, x
i

]. So, the expected cost of protest when choosing

the optimal tactic is:

E[k(r(t⇤
i

� x

i

)2) + (1� r)(t⇤
i

� ✓)2]

= k(r(x
i

� (rx
i

+ (1� r)µ
i

))2 + (1� r)(µ
i

� rx

i

+ (1� r)µ
i

)2 + (1� r)E[(✓ � µ

i

)2])

= k(r(1� r)2(x
i

� µ

i

) + (1� r)r2(x
i

� µ

i

) + (1� r)(�0 + �

s

+ �

x

)�1)

= k(1� r)

"
(�0 + �

s

+ �

x

)�1 + r

✓
�0 + �

s

�0 + �

s

+ �

x

◆2

d

2
i

#
⌘ K(d

i

) (10)

where d

i

⌘ |x
i

� µ

✓

| and µ

✓

⌘ �

s

s

✓

�0+�

s

is the public mean belief about the average preferred tactic

conditional on the public signal s
✓

but not the individual preferred tactic. So, d
i

is a measure of how

unusual or extreme citizen i believes her preferred tactic to be. The expected cost of protest when

choosing the optimal tactic is increasing in d

i

. Motivated by this symmetry, I restrict attention to

equilibria of the form “protest if and only if d
i

< d̂” for some d̂ � 0.

In an equilibrium of this form, the effect of increasing the amount of public information about

the preferred tactics on the protest size is determined by how increasing �

s

affects the cost to the

marginal citizen, i.e., the citizen observing exactly d

i

= d̂. The expected cost of protest for the
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marginal citizen has the following properties:

Proposition 6. The cost of protest to the marginal citizen is decreasing in �

s

if and only if the

expected size of protest is less than 2�(1/
p
2r)� 1.

Proof Differentiating equation 10:

@K

@�

s

= k(1� r)


�(�0 + �

s

+ �

x

)�2 + 2r
�

x

(�0 + �

s

+ �

x

)2

✓
�0 + �

s

�0 + �

s

+ �

x

◆
d

2
i

�
,

which is positive for the marginal citizen (i.e., d
i

= d̂) if and only if:

d̂ >

s
(�0 + �

s

+ �

x

)

2r�
x

(�0 + �

s

)
⌘ d̂

⇤
.

Given d̂, the probability a given citizen protests is:

Pr(d
i

< d̂) = Pr(�d̂ < x

i

� µ

✓

< d̂),

where

x

i

� µ

✓

= ✓ + ⌫

i

� �

s

�0 + �

s

(✓ + ✏

s

) = ⌫

i

+
�0

�0 + �

s

✓ � �

s

�0 + �

s

✏

s

,

which is normally distributed with mean 0 and precision. �

x

(�0+�

s

)
�0+�

s

+�

x

. So the cost of protest is

increasing in �

s

if and only if the the expected size of protest is above:

�

 s
�

x

(�0 + �

s

)

�0 + �

s

+ �

x

d̂

⇤

!
� �

 
�

s
�

x

(�0 + �

s

)

�0 + �

s

+ �

x

d̂

⇤

!

= 2�

 s
�

x

(�0 + �

s

)

�0 + �

s

+ �

x

s
�0 + �

s

+ �

x

2r�
x

(�0 + �

s

)

!
� 1 = 2�(1/

p
2r)� 1

As r ! 0, this critical level approaches 1, meaning the cost to the marginal citizen is always
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decreasing in �

s

. The critical threshold is decreasing in r, but even as r ! 1 it only goes down to

2�(1/
p

(2))� 1 ⇡ 0.52. Further, as shown below, the value of protest is increasing in �

s

through

other channels, so the payoff to protest for the marginal citizen may be increasing in �

s

even if the

expected size of protest is above this threshold.

Completing the derivation of the equilibrium requires determining the marginal citizen’s belief

about the protest size (A) and the range of chosen tactics (R). Recall a citizen observing x

i

’s belief

about ✓ is normal with mean µ(x
i

) and precision �0 + �

x

+ �

s

, so the expected protest level for

such a citizen is given by:

E[A|x
i

; d̂] = �
⇣
�

1/2
A

(µ+ d̂� µ(x
i

))
⌘
� �

⇣
�

1/2
A

(µ� d̂� µ(x
i

))
⌘

= �

✓
�

1/2
A

✓
�

x

(µ� x

i

)

�0 + �

x

+ �

s

+ d̂

◆◆
� �

✓
�

1/2
A

✓
�

x

(µ� x

i

)

�0 + �

x

+ �

s

� d̂

◆◆
,

where �

A

= �

x

(�0+�

s

+�

x

)
�0+�

s

+2�
x

. By the symmetry of the normal distribution, this can be written as a

function of d
i

, and for a citizen observing exactly d

i

= d̂ the expected protest size is:

E[A|d
i

= d̂; d̂] = �

✓
�

1/2
A

✓
d̂

�0 + �

s

+ 2�
x

�0 + �

x

+ �

s

◆◆
� �

✓
�

1/2
A

✓
�d̂

�0 + �

s

�0 + �

x

+ �

s

◆◆

= �

 
d̂

s
�

x

(�0 + �

s

+ 2�
x

)

�0 + �

s

+ �

x

!
� �

 
�d̂

s
�

x

(�0 + �

s

)2

(�0 + �

s

+ �

x

)(�0 + �

s

+ 2�
x

)

!
.

Both terms are increasing in d̂, so the expected protest from the perspective of the marginal citizen

is increasing in d̂.

For the range term, it is common knowledge that citizens between x

i

2 (µ � d̂, µ + d̂) will

protest and common knowledge what tactic they will select. So, the lowest tactic chosen by a

protester is:

t = r(µ� d̂) + (1� r)
�

s

s+ �

x

(µ� d̂)

�0 + �

s

+ �

x

,
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and the highest tactic t is the same as above but with µ+ d̂ replacing the µ� d̂ terms, so the range

is given by:

R = t� t = 2

✓
r +

(1� r)�
x

�0 + �

s

+ �

x

◆
d̂.

This expression is increasing in d̂ and decreasing in �

s

(for a fixed d̂). Interestingly, protest

participation is a strategic substitute through this channel, as more participants means a wider

range of tactics, rendering protest less appealing. (See Myatt (2015) for an example where strategic

substitutability can have counterintuitive effects of protest behavior.)

Summarizing, an equilibrium d̂ solves:

U

⇤
1 (d̂; d̂) ⌘ ! + b

A

E[A|d
i

= d̂; d̂]� g

✓
2

✓
r +

(1� r)�
x

�0 + �

s

+ �

x

◆
d̂

◆
�K(d̂) = 0. (11)

As d̂ ! 0, the E[A|d
i

= d̂; d̂] and g(R) terms drop out, and K(d̂) approaches (1�r)
�0+�

s

+�

y

. As

d̂ ! 1, the K(d̂) term approaches �1 while the other terms are finite. So, if ! >

(1�r)
�0+�

s

+�

y

there must be at least one finite d̂ that meets this equilibrium condition. Under some additional

restrictions the equilibrium is unique:

Lemma 7. i. If ! >

(1�r)
�0+�

s

+�

y

, then there is no equilibrium with no protest and at least one d̂ > 0

meeting equation 11.

ii. If b

A

and �g

0
are sufficiently small, this intersection is unique.

Proof Part i is demonstrated above. If the condition in part ii is met, then equation 11 is always

decreasing and hence is equal to zero for a unique d̂.

If the first condition does not hold there is always an equilibrium with no protest, though in this

case (and in general) there maybe multiple intersections and hence multiple equilibria. When this

is the case I restrict attention to the equilibrium with the highest level of protest.

Taking comparative statics on the size of protest:
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Proposition 8. The expected size of protest is:

i) decreasing in k,

ii) increasing in !, and

iii) increasing in �

s

if E[A|d̂] < 2�
�
1/
p
2r
�

(and sometimes increasing even if this does not hold)

Proof Recall the expected size of protest is

E[A|d̂] = 2�

 s
�

x

(�0 + �

s

)

�0 + �

s

+ �

x

d̂

!
� 1

For part i, the sign of @E[A|d̂]
k

is equal to the sign of @d̂

@k

. Implicitly differentiating gives:

@d̂

@k

=
�@U

⇤
1

@k

@U

⇤
1

@d̂

.

The denominator is positive and the denominator is negative in the largest (or unique) d̂ such that

U

⇤
1 (d) = 0, so the expression is negative. Part ii follows from an analogous calculation.

For part iii:

@E[A|d̂]
@�

s

= 2�

 s
�

x

(�0 + �

s

)

�0 + �

x

+ �

s

d̂

!"
d̂

1

2

✓
�

x

(�0 + �

s

)

�0 + �

x

+ �

s

◆�1/2✓
�

x

�0 + �

s

+ �

x

◆2

+

s
�

x

(�0 + �

s

)

�0 + �

x

+ �

s

@d̂

@�

s

#
.

All but the @d̂

@�

s

terms are guaranteed to be positive. This term is given by:

@d̂

@�

s

=
�@U

⇤
1

@�

s

@U

⇤
1

@d̂

.

Again the denominator is negative at an equilibrium d̂. The numerator is given by the sign of
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@E[A|d̂,d
i

=d̂]
@�

s

. It is useful to write the expected size of protest as:

E[A|d̂, d
i

= d̂] = �

0

BB@d̂�

1/2
A

✓
1 +

�

x

�0 + �

s

+ �

x

◆

| {z }
I

1

CCA+ �

0

BB@d̂�

1/2
A

✓
1� �

x

�0 + �

s

+ �

x

◆

| {z }
II

1

CCA� 1.

So, this derivative can be written:

@E[A|d̂, d
i

= d̂]

@�

s

=�(I)d̂


@

p
�

A

@�

s

✓
1 +

�

x

�0 + �

s

+ �

x

◆
+
p
�

A

��

x

(�0 + �

s

+ �

x

)2

�

+ �(II)d̂


@

p
�

A

@�

s

✓
1� �

x

�0 + �

s

+ �

x

◆
+
p
�

A

�

x

(�0 + �

s

+ �

x

)2

�
.

The only negative term is the second in the upper square bracket, but since 0 < II < I , �(II) >

�(I), the corresponding second term in the bottom square bracket is larger, and hence the expres-

sion is positive, and hence @d̂

@�

s

> 0.

Next, R(d̂) is decreasing in �

s

and hence g(R(d̂)) is increasing in �

s

. As shown above, K(d̂)

is increasing in �

s

if if E[A|d̂] < 2�
�
1/
p
2r
�
, so this is a sufficient but not necessary condition

for the protest level to be increasing in �

s

.

Figure A1 illustrates this result. As the general cost of protest (k) increases, the expected size

of protest drops and eventually reaches zero. This makes protest more cohesive – measured by

a linearly decreasing function of tactics chosen23 – as only those with typical preferred tactics

participate. Conversely, as the cost of protest decreases, protests become larger and less cohesive.
23In particular, the cohesion is defined as 1 � .5R where R is the range of chosen tactics, which is selected to

make the size and cohesion on a comparable scale. A substantively similar picture would result from any decreasing
function.
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Figure A1: Effect of increasing the cost of participation (left panel) and precision of public infor-
mation about tacts (right panel) on the size (black curve) and cohesion (grey curve) of protests.
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With the bias term, the distribution of s
✓

given ✓ is now normal with mean ✓+m

✓

and precision:
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s

�

✓

�

s

+ �

✓

⌘ �

0
s

.

By standard Bayesian updating, her belief about ✓ is normal with mean:

µ
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✓
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✓
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and precision:
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When choosing tactic µ

✓

, the expected cost of protest is k/�0.
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Similarly, rearranging the formula for s
!

gives:

(s
!

�m

!

)/⇢ = ! + (✏
!

+ ⌫

b

)/⇢,

where ⌫

b

= b

!

�m

!

, i.e., the “error” in the estimation of the bias. Since (✏
!

+ ⌫

b

)/⇢ is a random

variable with mean 0 and precision:

⇢

�2 ↵

!

�

!

↵

!

+ �

!

⌘ ↵

0
.

So, (s
!

�m

!

)/⇢ is an unbiased signal of ! the belief about ! upon observing s

!

is now normal

with mean:

µ

0
!

= �

0
µ

!

+ (1� �

0)(s
!

�m

!

)/⇢,

where �0 = ↵0
↵0+↵

0 . So, the probability of protest is now Pr(µ0
!

> k/�

0
), and the ex ante distribution

of µ0
!

is normal with mean µ

!

and precision (1� �)�2
↵

0.

To prove proposition 5, note k/�0 is decreasing in �0, �s

, and �

✓

, proving part i. The probability

of protest can be written as �
⇣
(1� �)(↵0)1/2(k/�

0 � µ

!

)
⌘

, which is increasing in ↵

0 if and only

if k/�0
< µ

!

, and ↵

0 is increasing in �

!

and ⇢, proving part ii. The probability of protest is not a

function of m
✓

and m

!

, proving part iii.

Endogenous Bias

Next, consider the case where the bias terms in s

!

is endogenously chosen by the incumbent

regime (or some other actor), denoted I . To ease interpretation, suppose a higher level of bias leads

to a more pro-regime (i.e., lower) s
!

:

s

!

= ⇢! � b

!

+ ✏

!

.
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Let the incumbent payoff be:

u

I

= �af(t, ✓)� c

!

(b
!

),

where f is strictly positive and c

!

is increasing and convex in b

!

. That is, when the citizen protests,

the incumbent payoff is reduced by f(t, ✓), and c

!

represents the cost of manipulating the signal

of its unpoularity.

As is typical in a “career concerns” style model, the main condition for a pure strategy equi-

librium is that if the citizen expects the incumbent to choose a bias level b⇤
!

and behaves optimally

given this belief, it is in fact optimal for the regime to choose exactly b

!

= b

⇤
!

. If the citizen expects

the bias to be b

⇤
!

, then the mean of her posterior belief about ! upon observing s

!

is:

µ

!

= �µ

!

+ (1� �)(s
!

+ b

⇤
!

)/⇢,

where � is as defined in the main text. Note that the higher the expectation of bias, the higher the

belief about the regime’s unpopularity. Rearranging, she protests if and only if µ
!

> k/�, or:

s

!

>

�
k/� � �µ

!

�
⇢

(1� �)
� b

⇤
!

⌘ ŝ

!

.

So, the probability of protest when choosing bias level b
!

when the citizen expects bias level b⇤
!

is:

Pr

✓
⇢! � b

!

+ ✏

!

>

�
k/� � �µ

!

�
⇢

(1� �)
� b

⇤
!

◆

= Pr

✓
⇢! + ✏

!

>

�
k/� � �µ

!

�
⇢

(1� �)
� b

⇤
!

+ b

!

◆

�

✓p
⇢

2
↵0 + ↵

s

✓
⇢µ

!

�
�
k/� � �µ

!

�
⇢

(1� �)
+ b

⇤
!

� b

!

◆◆
.
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So, the expected payoff for choosing bias level b
!

when the citizen expects b⇤
!

is:

u

i

(b
!

; b⇤
!

) = f(t, ✓)�

✓p
⇢

2
↵0 + ↵

s

✓
⇢µ

!

�
�
k/� � �µ

!

�
⇢

(1� �)
+ b

⇤
!

� b

!

◆◆
� c(b

!

),

giving first order condition:

p
⇢

2
↵0 + ↵

s

E[f(t, ✓)]�
✓p

⇢

2
↵0 + ↵

s

✓
⇢µ

!

�
�
k/� � �µ

!

�
⇢

(1� �)

◆◆
= c

0(b⇤
!

). (12)

The LHS is not a function of b
!

, so whether this is met for any or more than one b
!

depends on the

shape of the c function.

If c meets the Inada conditions (i.e., c is increasing and convex with c

0(0) = 0 and lim
b

!

!b

c

0(b
!

) =

1) then there is a unique solution to equation 12.

When there is a unique pure strategy equilibrium to the model, the only difference in computing

the comparative statics on the probability of protest with respect to the exogenous parameters (e.g.,

⇢ and �

s

) is that these also may affect the equilibrium level of bias chosen. However, as long as

there is a pure strategy, the equilibrium bias choice does not affect the probability of protest, as the

citizen adjusts for the bias in equilibrium. So, all of the comparative statics in proposition 1 still

hold.

If the incumbent plays a mixed strategy, it becomes much more difficult to characterize the

equilibrium strategies, but given the analysis of the model with uncertainty over the bias – which

the mixed strategy case endogenizes – the main results seem unlikely to change.
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Nonstandard Beliefs

To model noise in the posterior belief about the regime popularity, suppose the citizen’s condi-

tional belief about ! given s

!

is:

µ

0
!

(s
!

) = �µ

!

+ (1� �)(s
!

/⇢) + �

where � is normally distributed with mean µ

�

and precision ↵

�

. Assuming the citizen behaves

optimally given this belief – i.e., the citizen is unaware that she forms her belief incorrectly, she

protests if µ0
!

(s
!

) > k/�. The ex ante distribution of this belief is normal with mean µ

!

+ µ

�

and

precision ⌧

µ

↵

�

⌧

µ

+↵

�

where ⌧

µ

is defined in section 1. So the probability of protest is

�

✓
⌧

µ

↵

�

⌧

µ

+ ↵

�

(k/� � (µ
!

+ µ

�

))

◆

This is the same probability of protest derived in section 1 with ⌧

µ

↵

�

⌧

µ

replacing ⌧

µ

and µ

!

+ µ

�

replacing µ

!

. So, the conclusions in the main model remain unchanged. In particular, increasing

�

s

increases the probability of protest and increasing ⇢ increases the probability of protest when

k/� > µ

!

+ µ

�

.

The citizen having the wrong belief about the effect of ⇢ is complex since ⇢ affects both the

normalization of s

!

and the weight (i.e, �). To simplify, suppose the misperception of ⇢ only

affects the normalization. In particular, let:

µ

B

!

(s
!

) = �µ

!

+ (1� �)(s
!

/⇢

0(⇢))

where ⇢0(⇢) is the adjusting parameter used by the citizen, which may be a function of the true ease

of airing grievances. E.g., if ⇢0(⇢) = ⇢ the citizen forms the correct Bayesian belief, and if ⇢0 is

constant in ⇢ then changes in the true ease of criticism has no effect on how the citizen adjusts.

Given the incorrect adjustment, the posterior belief as a function of the primitive random vari-
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ables is:

µ

B

!

(s
!

) = �µ

!

+ (1� �)((⇢! + ✏

s

)/⇢̂(⇢))

which is normally distributed with mean

✓
�+ (1� �)

⇢

⇢̂(⇢)

◆
µ

!

and precision

✓
1� �

⇢̂(⇢)

◆2
⇢

2
↵

!

↵

s

⇢

2
↵

!

+ ↵

s

If µ
!

> 0, the mean of the distribution of µB

!

(s
!

) is increasing in ⇢ if:

@

@⇢


⇢

⇢̂(⇢)

�
=

⇢̂(⇢)� ⇢⇢̂

0(⇢)

⇢̂(⇢)2
> 0

⇢̂(⇢) > ⇢⇢̂

0(⇢)

If this inequality holds, say the citizen under-adjusts for the effect of ⇢. So, when the citizen

under-adjusts, there will be more protest through this channel.

However, increasing ⇢ also affects the precision of the posterior mean (even ignoring the effect

of the changing the weight �). The first term of the precision is decreasing in ⇢ (as long as ⇢̂(⇢) is

increasing in ⇢) and the second is increasing, so the sign of that derivative is indeterminate. As in

the main text, if this precision is increasing in ⇢, this will lead to more protest when protest is ex

ante likely and less protest when protest is less likely (setting aside the effect on the mean.)
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